
Knowing Why – On the Dynamics of Knowledge about Actual
Causes in the Situation Calculus

Shakil M. Khan

Ronin Institute

Montclair, NJ, USA

shakil.khan@ronininstitute.org

Yves Lespérance

York University

Toronto, Ontario, Canada

lesperan@eecs.yorku.ca

ABSTRACT
Reasoning about observed effects and their causes is important in

many applications. For instance, understanding why a plan failed

can aid the task of replanning by allowing the agent to tailor a better

plan. But under incomplete information, an agent may be unable

to determine which actions/events caused an effect. To overcome

this, the agent may be able to perform some sensing actions that

allow him to figure out what caused the effect. This becomes even

more important in multiagent contexts, where an agent may want

to identify which agents caused some effect, or possibly prevent

other agents from determining who caused something. The effects

involved may even be epistemic effects, such as an agent coming to

know the PIN of a bank card, and the causes may be sensing actions.

Reasoning about such causes is a key part of "theory of mind" and

understanding other agents’ behaviour. While there has been much

work on causality from an objective standpoint, causality from the

point of view of individual agents has received much less attention.

In this paper, we develop a formalization of knowledge about actual

causes in the situation calculus, and how it is affected by actions

including sensing. We show that the proposed framework has some

intuitive properties and study the conditions under which an agent

can be expected to come to know the causes of an effect.

KEYWORDS
Actual Cause; Knowledge; Sensing Actions; Causal Knowledge;

Situation Calculus; Logic

ACM Reference Format:
Shakil M. Khan and Yves Lespérance. 2021. Knowing Why – On the Dynam-

ics of Knowledge about Actual Causes in the Situation Calculus. In Proc.
of the 20th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Actual causality, also known as token-level causality, is a long stand-
ing philosophical problem that is intrinsic to the task of reasoning

about observations. Given a narrative or trace of events, computing

the actual causes of an observed effect involves finding the events in

the narrative that are relevant to the effect, i.e. those that caused the

effect. This is in contrast to general or type-level causality, where
the task is to discover universal causal mechanisms. Reasoning

about observed effects and their causes is also important for agents.

Formalizing knowledge about actual causes in an agent framework

can be useful for a variety of tasks. For instance, such reasoning

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

can help an agent to recover from plan failure: information about

why a plan failed can aid the task of replanning by allowing the

agent to tailor a better plan. But under incomplete information, an

agent may be unable to determine which actions/events caused an

effect. To overcome this, the agent may be able to perform some

sensing actions that allow him to figure out what caused the effect.

This becomes even more important in multiagent contexts, where

an agent may want to identify which agents caused some effect, or

possibly prevent other agents from determining who caused some-

thing. The effects involved may even be epistemic effects, such as

an agent coming to know the PIN of a bank card, and the causes

may be sensing actions. Reasoning about such causes is a key part

of "theory of mind" and understanding other agents’ behaviour.

Pearl [29, 30] was a pioneer in computational enquiry into actual

causality. This line of research was later continued by Halpern and

Pearl [13, 16] and others [9, 14, 15, 19, 20]. This “HP approach” is

based on the concept of structural equations [35]. HP follows the

Humean counterfactual definition of causation, which states that

“an outcome 𝐵 is caused by an event 𝐴” is the same as saying that

“had 𝐴 never occurred, 𝐵 never had existed”. This definition suffers

from the problem of preemption
1
: it could be the case that in the

absence of event 𝐴, 𝐵 would still have occurred due to another

event, which in the original trace was preempted by 𝐴. HP address

this by performing counterfactual analysis only under carefully

selected contingencies, which suspend some subset of the model’s

mechanisms. While their inspirational early work has been shown

to be useful for some practical applications (e.g. [4]), their approach

based on Structural Equations Models (SEM) has been criticized

for its limited expressiveness [11, 19, 20], and researchers have

attempted to expand SEM with additional features, e.g. [24].

A different approach was proposed by Batusov and Soutchanski

[3], who developed a foundational definition of actual achievement

cause within situation calculus basic action theories [31]. They

focused on linear traces only. However, an advantage of their ap-

proach is that it is based on an expressive formal theory of action.

While there has been much work on actual causality from an

objective standpoint, causality from the point of view of some par-

ticular agent has received much less attention. In this paper, we

develop a formalization of knowledge about actual causes in the sit-

uation calculus, and how it is affected by actions including sensing.

Our formalization, which is based on the definition of actual cause

in [3], supports epistemic effects and recognizes sensing actions as

causes. We show that the proposed framework has some intuitive

properties and study the conditions under which an agent can be

expected to come to know the causes of an effect. We also prove

1
Preemption happens when two competing events try to achieve the same effect, and

the latter of these fails to do so, as the earlier one has already achieved the effect.

that the regression operator in the situation calculus can be used

to answer queries about causal knowledge when the action history

is known.

The paper is organized as follows. In the next section, we outline

the situation calculus and a model of knowledge, and introduce

our running example. In §3, we discuss the definition of actual

cause proposed in [3]. Based on this, in §4, we present our logic

of actual cause within the situation calculus. In §5, we present our

formalization of knowledge about actual causes, discuss how causal

knowledge changes as a result of (knowledge-producing) actions,

and prove some properties of our formalization. In §6, we show

how epistemic causes and effects can be handled. We conclude with

some discussion in §7.

2 ACTION AND KNOWLEDGE
Our base framework for modeling causal knowledge is the situation

calculus (SC) [27] as formalized in [31]. Here, a possible state of

the domain is represented by a situation. The initial state is de-

noted by 𝑆0. There is a distinguished binary function symbol 𝑑𝑜

where 𝑑𝑜 (𝑎, 𝑠) denotes the successor situation to 𝑠 resulting from

performing the action 𝑎. Thus the situations can be viewed forming

a tree, where the root of the tree is an initial situation and the arcs

represent actions. As usual, a relational/functional fluent takes a

situation term as its last argument. There is a special predicate

Poss(𝑎, 𝑠) used to state that action 𝑎 is executable in situation 𝑠 .

We will use the abbreviation 𝑑𝑜 ([𝛼1, · · · , 𝛼𝑛], 𝑆0) to represent the

situation obtained by consecutively performing 𝛼1, · · · , 𝛼𝑛 start-

ing from 𝑆0. Also, the notation 𝑠 < 𝑠 ′ means that situation 𝑠 ′ can
be reached from situation 𝑠 by executing a sequence of actions.

𝑠 ⊑ 𝑠 ′ is an abbreviation of 𝑠 < 𝑠 ′ ∨ 𝑠 = 𝑠 ′. 𝑠 < 𝑠 ′ is an abbre-

viation of 𝑠 < 𝑠 ′ ∧ executable(𝑠 ′), where executable(𝑠) is defined
as ∀𝑎′, 𝑠 ′. 𝑑𝑜 (𝑎′, 𝑠 ′) ⊑ 𝑠 ⊃ Poss(𝑎′, 𝑠 ′), i.e. every action performed

in reaching situation s was possible in the situation in which it

occurred. 𝑠 ≤ 𝑠 ′ is an abbreviation of 𝑠 < 𝑠 ′ ∨ 𝑠 = 𝑠 ′.
Our framework uses an action theory D that includes the fol-

lowing set of axioms:
2
(1) action precondition axioms (APA), one

per action 𝑎 characterizing Poss(𝑎, 𝑠), (2) successor state axioms

(SSA), one per fluent, that succinctly encode both effect and frame

axioms and specify exactly when the fluent changes [31], (3) initial

state axioms describing what is true initially, (4) unique name ax-

ioms for actions, and (5) domain-independent foundational axioms

describing the structure of situations [25, 31].

The SC features a single-step regression operator 𝜌 [Φ, 𝛼]. Given
a query “does Φ hold in the situation obtained by performing the

ground action 𝛼 in some situation 𝜎 , i.e. in 𝑑𝑜 (𝛼, 𝜎)?”, 𝜌 transforms

it into an equivalent query “does Ψ hold in situation 𝜎?”, eliminating

action 𝛼 . The expression 𝜌 [Φ, 𝛼] = Ψ denotes such a logically

equivalent query obtained from the formula Φ by replacing each

fluent atom 𝑃 in Φ with the right-hand side of the SSA for 𝑃 where

the action variable 𝑎 is instantiated with the ground action 𝛼 , and

then simplified using unique name axioms for actions and constants.

Ψ thus provides the weakest preconditions of Φ in 𝜎 given 𝛼 .

We will use uppercase Greek letters Φ,Ψ, etc. for situation-

suppressed SC formulae, which are defined as follows:

2
We will be quantifying over formulae, and thus assume that D includes axioms for

encoding of formulae as first order terms, as in [34].

Φ ::= 𝑃 (®𝑥) | ¬Φ | Φ ∧ Ψ | ∃𝑥 . Φ,
where ®𝑥 and 𝑥 are object terms. Also, we will use 𝛼 and 𝜎 , possibly

with decorations, to represent ground action and situation terms,

respectively. Finally, we will use uppercase Latin letters for ground

terms, and lowercase Latin letters for variables.

Following [28, 32], we model knowledge using a possible worlds

account adapted to the SC. There can now be multiple initial situa-

tions. Init (𝑠) means that 𝑠 is an initial situation. The actual initial

state is denoted by 𝑆0. 𝐾 (𝑠 ′, 𝑠) is used to denote that in situation 𝑠 ,

the agent thinks that she could be in situation 𝑠 ′. Using𝐾 , the knowl-
edge of an agent is defined as:

3 Know(Φ, 𝑠) def

= ∀𝑠 ′. 𝐾 (𝑠 ′, 𝑠) ⊃ Φ[𝑠 ′],
i.e. the agent knows Φ in 𝑠 if Φ holds in all of her 𝐾-accessible

situations in 𝑠 . We also use the abbreviations KWhether (Φ, 𝑠) def

=

Know(Φ, 𝑠) ∨ Know(¬Φ, 𝑠), i.e., the agent knows whether Φ holds

in 𝑠 and KRef (\, 𝑠) def

= ∃𝑡 . Know(\ = 𝑡, 𝑠), i.e., she knows who/what
\ refers to. 𝐾 is constrained to be reflexive and Euclidean (and

thus transitive) in the initial situation to capture the fact that the

agent’s knowledge is true, and that she has positive and negative

introspection.

In our framework, the dynamics of knowledge is specified us-

ing a SSA for 𝐾 that supports knowledge expansion as a result

of sensing actions. The information provided by a binary sensing

action is specified using the predicate 𝑆𝐹 (𝑎, 𝑠). For example, we

might have an axiom: 𝑆𝐹 (𝑠𝑒𝑛𝑠𝑒onTable (𝑏), 𝑠) ≡ onTable(𝑏, 𝑠), i.e.,
the action 𝑠𝑒𝑛𝑠𝑒ontable (𝑏) will tell the agent whether the block 𝑏
is on the table in the situation where it is performed. Similarly

for non-binary sensing actions, the term sff (𝑎, 𝑠) is used to de-

note the sensing value returned by the action. For example, we

might have sff (readnumBlocksOnTable, 𝑠) = numBlocksOnTable(𝑠), i.e.
readnumOfBlocksOnTable tells the agent the number of blocks on the

table. As shown in [32], the constraints on 𝐾 then continue to hold

after any sequence of actions since they are preserved by the SSA

for 𝐾 . Scherl and Levesque [32] also showed how one can define

regression for knowledge-producing actions.

Thus to model knowledge, we will use a theory that is similar to

before, but with modified foundational axioms to allow for multiple

initial epistemic states. Also, action preconditions can now include

knowledge preconditions and initial state axioms can now include

axioms describing the epistemic states of the agents. Finally, the

aforementioned axioms for 𝐾 are included. See [31] for details of

these. Note that like [32], we assume that actions are fully observ-

able (even if their effects are not). This can be generalized as in [1].

Example. We use a simple blocks-world like domain as our run-

ning example.We have an agent/robot that is equipped with a single

gripper. The agent is in a room that has at least two different blocks,

𝐵1 and 𝐵2. The agent can pick up (and drop) a block 𝑏 by executing

the pickUp(𝑏) (and drop(𝑏), resp.) action. The agent can only hold

one block at a time. Some of the blocks can be fragile. Dropping a

fragile block breaks the block. The agent can also make a block 𝑏

fragile by quenching it, i.e. executing the quench(𝑏) action.4 Finally,
initially the agent is holding block 𝐵1.

3Φ can contain a placeholder now in the place of the situation terms. Also,Φ[𝑠] denotes
the formula obtained by restoring the situation argument 𝑠 into all fluents in Φ.
4
Quenching, which increases the hardness as well as the fragility, involves the rapid

cooling of a material to obtain certain properties.

There are three fluents in this domain, holding(𝑏, 𝑠), fragile(𝑏, 𝑠),
and broken(𝑏, 𝑠), which respectively mean that the agent is holding

block 𝑏 in situation 𝑠 , 𝑏 is fragile in 𝑠 , and 𝑏 is broken in 𝑠 .

We now give the domain-dependent axioms specifying this do-

main. First, the preconditions for pickUp(𝑏), drop(𝑏), and quench(𝑏)
can be specified using APAs as follows (henceforth, all free variables

in a sentence are assumed to be universally quantified):

(𝑎) . Poss(pickUp(𝑏), 𝑠) ≡ ¬∃𝑏 ′. holding(𝑏 ′, 𝑠),
(𝑏). Poss(drop(𝑏), 𝑠) ≡ holding(𝑏, 𝑠), (𝑐) . Poss(quench(𝑏), 𝑠) .

For instance, (𝑎) says that the agent can pick up a block 𝑏 in situa-

tion 𝑠 iff she is not already holding another block 𝑏 ′.
Moreover, the following SSAs specify how the fluents holding,

fragile, and broken change value when an action happens:

(𝑑) . holding(𝑏, 𝑑𝑜 (𝑎, 𝑠)) ≡ (𝑎 = pickUp(𝑏)
∨ (holding(𝑏, 𝑠) ∧ 𝑎 ≠ drop(𝑏))),

(𝑒) . fragile(𝑏, 𝑑𝑜 (𝑎, 𝑠)) ≡ (𝑎 = quench(𝑏) ∨ fragile(𝑏, 𝑠)),
(𝑓) . broken(𝑏, 𝑑𝑜 (𝑎, 𝑠)) ≡ ((fragile(𝑏, 𝑠) ∧ 𝑎 = drop(𝑏))

∨ broken(𝑏, 𝑠)) .
That is, (𝑑) the agent is holding a block 𝑏 in the situation resulting

from executing action 𝑎 in situation 𝑠 (i.e. in 𝑑𝑜 (𝑎, 𝑠)) if and only if

𝑎 refers to the agent’s action of picking 𝑏 up from the table, or she

already had 𝑏 in 𝑠 and 𝑎 is not the action of dropping 𝑏, etc.

Furthermore, the following initial state axioms say that initially

(𝑔) the agent is only holding block 𝐵1, (ℎ) all the blocks are non-
fragile, and (𝑖) all the blocks are intact:

(𝑔) . ∀𝑏. holding(𝑏, 𝑆0) ≡ 𝑏 = 𝐵1, (ℎ) . ∀𝑏. ¬fragile(𝑏, 𝑆0),
(𝑖) . ∀𝑏. ¬broken(𝑏, 𝑆0).
Finally, we implicitly assume unique names axioms for blocks,

and unique names for actions axioms. Henceforth, we use D𝑏𝑤 to

refer to the above axiomatization.

Given this, let us compute the single-step regression 𝜌 [broken(𝐵1,
𝑑𝑜 (drop(𝐵1), 𝑠∗)), drop(𝐵1)], for some situation 𝑠∗. From the right-

hand side of the successor-state axiom (𝑓) above and by substi-

tuting action variable 𝑎 by drop(𝐵1), object variable 𝑏 by 𝐵1, and

situation variable 𝑠 by 𝑠∗, the result of 𝜌 [broken(𝐵1, 𝑑𝑜 (drop(𝐵1),
𝑠∗)), drop(𝐵1)] amounts to (fragile(𝐵1, 𝑠∗)∧drop(𝐵1) = drop(𝐵1))∨
broken(𝐵1, 𝑠∗). Using the unique names axioms, the result of 𝜌 can

be simplified to fragile(𝐵1, 𝑠∗) ∨ broken(𝐵1, 𝑠∗).

3 ACTUAL CAUSE
Given a trace of events, actual achievement causes are the events
that are behind achieving an effect while actual maintenance causes
are those which are responsible for mitigating the threats to the

achieved effect.
5
There can also be cases of subtle interactions of

these two. In this section, we review previous work on achievement

causality in the SC [3]. An effect here is a SC formula Φ[𝑠] that
is uniform in 𝑠 (meaning that it has no occurrences of Poss, <,

other situation terms besides 𝑠 , and quantifiers over situations)

and that may include quantifiers over object variables. Given an

effect Φ, the actual causes are defined relative to a causal setting
that includes a theory D representing the domain dynamics, and a

5
We do not conceptually distinguish between agents’ actions and nature’s events.

ground situation 𝜎 , representing the “narrative” (i.e. trace of events)

where the effect was observed.

Definition 3.1 (Causal Setting [3]). A causal setting is a tuple

⟨D, 𝜎,Φ[𝑠]⟩, whereD is a theory,𝜎 is a ground situation term of the

form 𝑑𝑜 ([𝛼1, · · · , 𝛼𝑛], 𝑆0) with ground action functions 𝛼1, · · · , 𝛼𝑛
such that D |= executable(𝜎), and Φ[𝑠] is a SC formula uniform in

𝑠 such that D |= ¬Φ[𝑆0] ∧ Φ[𝜎].
As the theory D does not change, when referring to a causal

setting we will often suppressD and simply write ⟨𝜎,Φ⟩. Also, here
Φ is required to hold by the end of the narrative 𝜎, and thus we

ignore the cases where Φ is not achieved by the actions in 𝜎 , since

if this is the case, the achievement cause truly does not exist.

Note that since all changes in the SC result from actions, the

potential causes of an effect Φ are identified with a set of ground

action terms occurring in 𝜎 . However, since 𝜎 might include multi-

ple occurrences of the same action, one also needs to identify the

situations where these actions were executed.

According to Batusov and Soutchanski [3], if some action 𝛼 of

the action sequence in 𝜎 triggers the formula Φ to change its truth

value from false to true relative to D, and if there are no actions in

𝜎 after 𝛼 that change the value of Φ back to false, then 𝛼 is an actual

cause of achieving Φ in 𝜎 . They showed that when used together

with the single-step regression operator 𝜌 , in addition to the single

action that brings about the effect of interest, one can also capture

the chain of actions that build up to it. The following inductive

definition formalizes this intuition. Let Π𝑎𝑝𝑎 (𝛼, 𝜎) be the r.h.s. of
the precondition axiom for action 𝛼 in situation 𝜎 .

Definition 3.2 (Achievement Cause). A causal settingC = ⟨𝜎,Φ[𝑠]⟩
satisfies the achievement condition of Φ via the situation term

𝑑𝑜 (𝛼∗, 𝜎∗) ⊑ 𝜎 iff there is an action 𝛼 ′ and situation 𝜎 ′ such that

D |= ¬Φ[𝜎 ′] ∧ ∀𝑠 . 𝑑𝑜 (𝛼 ′, 𝜎 ′) ⊑ 𝑠 ⊑ 𝜎 ⊃ Φ[𝑠],
and either𝛼∗ = 𝛼 ′ and𝜎∗ = 𝜎 ′, or the causal setting ⟨𝜎 ′, 𝜌 [Φ[𝑠], 𝛼 ′]
∧Π𝑎𝑝𝑎 (𝛼 ′, 𝜎 ′)⟩ satisfies the achievement condition via the situation

term 𝑑𝑜 (𝛼∗, 𝜎∗).Whenever a causal setting C satisfies the achieve-

ment condition via situation 𝑑𝑜 (𝛼∗, 𝜎∗), the action 𝛼∗ executed in

situation 𝜎∗ is said to be an achievement cause in C.
Batusov and Soutchanski [3] show that the achievement causes

of C form a finite sequence of situation-action pairs, which they

call the achievement causal chain of C.
As shown in [2], one can also define the concept of maintenance

cause by appealing to a counterfactual notion of potential threats

in the causal setting that can possibly flip the truth value of the

effect Φ to false, and actions in the narrative that mitigated those

threats. In general, actual causes can be either achievement causes

or maintenance causes and the causal chain can include both. To

keep it simple, we focus exclusively on actual achievement causes.

Example (Cont’d). Consider the narrative 𝜎1 = 𝑑𝑜 ([drop(𝐵1),
quench(𝐵1), quench(𝐵2), pickUp(𝐵1), drop(𝐵1)], 𝑆0), i.e. the agent

drops the block 𝐵1 (that she is holding), then she quenches the

block 𝐵1 and then 𝐵2, then she picks up 𝐵1, and finally she drops it

again. We are interested in computing the actual causes of the effect

Φ1 = broken(𝐵1, 𝑠). This scenario is depicted in the upper part of

Figure 1. Here the truth value of fluents holding(𝐵1), fragile(𝐵1),
and broken(𝐵1) for each situation can be read by looking at the

𝑆0

¬𝑏
¬𝑓
ℎ

-
𝑑𝑟

𝑆1

¬𝑏
¬𝑓
¬ℎ

-
𝑞𝑏1

𝑆2

¬𝑏
𝑓
¬ℎ

-
𝑞𝑏2

𝑆3

¬𝑏
𝑓
¬ℎ

-
𝑝𝑢

𝑆4

¬𝑏
𝑓
ℎ

-
𝑑𝑟

𝑆5 = 𝜎1
𝑏

𝑓
¬ℎ

𝑆1
0

¬𝑏
𝑓
ℎ

-
𝑑𝑟

𝑆1
1

𝑏

𝑓
¬ℎ

-
𝑞𝑏1

𝑆1
2

𝑏

𝑓
¬ℎ

-
𝑞𝑏2

𝑆1
3

𝑏

𝑓
¬ℎ

-
𝑝𝑢

𝑆1
4

𝑏

𝑓
ℎ

-
𝑑𝑟

𝑆1
5

𝑏

𝑓
¬ℎ

Figure 1: Evolution of fluents starting in situations 𝑆0 and 𝑆1
0

situation box top-down. The actions between each pair of situations

are also shown (for now, ignore the second row).

Then, according to Definition 3.2, the causal setting ⟨𝜎1,Φ1⟩ satis-
fies the achievement conditionΦ1 via the situation term𝑑𝑜 (drop(𝐵1),
𝑆4),where 𝑆4 = 𝑑𝑜 ([drop(𝐵1), quench(𝐵1), quench(𝐵2), pickUp(𝐵1)],
𝑆0), so drop(𝐵1) executed in 𝑆4 is an achievement cause of broken(𝐵1).

Moreover, let us compute 𝜌 [broken(𝐵1, 𝜎1), drop(𝐵1)] and

Poss(drop(𝐵1), 𝑆4), starting with the former. As shown in §2 above,

the result of 𝜌 can be simplified to fragile(𝐵1, 𝑆4) ∨ broken(𝐵1, 𝑆4).
Let us now consider Poss(drop(𝐵1), 𝑆4); from the right-hand side

of action precondition axiom (𝑏) above and by replacing object vari-
able𝑏 with𝐵1 and situation variable 𝑠 by 𝑆4, we have holding(𝐵1, 𝑆4) .
Computing 𝜌 [broken(𝐵1, 𝜎1), drop(𝐵1)] ∧ Poss(drop (𝐵1), 𝑆4) thus
gives rise to a new causal setting ⟨𝑆4, (fragile(𝐵1) ∨ broken(𝐵1)) ∧
holding(𝐵1)⟩. It can be shown that this setting satisfies the achieve-

ment condition via the action pickUp(𝐵1), so pickUp(𝐵1) executed
in 𝑆3 = 𝑑𝑜 ([drop(𝐵1), quench(𝐵1), quench(𝐵2)], 𝑆0) is an achieve-

ment cause. Furthermore, this yields yet another setting:

⟨𝑆3, 𝜌 [(fragile(𝐵1, 𝑆4) ∨ broken(𝐵1, 𝑆4)) ∧ holding(𝐵1, 𝑆4),
pickUp(𝐵1)] ∧ Poss(pickUp(𝐵1), 𝑆3)⟩.

Doing simplifications similar to what we did before, we can ar-

rive at the new causal setting ⟨𝑆3, (fragile(𝐵1, 𝑠) ∨ broken(𝐵1, 𝑠)) ∧
¬∃𝑏 ′. holding(𝑏 ′, 𝑠)⟩, which meets the achievement condition via

the action quench(𝐵1) executed in situation 𝑆1.

And again, this yields another setting:

⟨𝑆1, 𝜌 [(fragile(𝐵1, 𝑆2) ∨ broken(𝐵1, 𝑆2)) ∧ ¬∃𝑏 ′. holding(𝑏 ′, 𝑆2),
quench(𝐵1)] ∧ Poss(quench(𝐵1), 𝑆1)⟩,

which can be simplified to ⟨¬∃𝑏 ′. holding(𝑏 ′, 𝑠), 𝑆1⟩, and meets the

achievement condition via drop(𝐵1) executed in 𝑆0, and the analysis
terminates. The causal chain obtained is thus as follows:

{(drop(𝐵1), 𝑆4), (pickUp(𝐵1), 𝑆3), (quench(𝐵1), 𝑆1), (drop(𝐵1), 𝑆0)}.

Note that Definition 3.2 can clearly distinguish between irrele-

vant actions, such as quench(𝐵2), and actions in the causal chain.

The latter are depicted using solid arrows in Figure 1. Also, it can

handle quantified effects, e.g. ∃𝑏. broken(𝑏, 𝑠), i.e. the effect that

some block was broken.

4 A LOGIC OF ACTUAL CAUSE
While the authors in [3] give a definition of actual cause using the

SC, as seen in the previous section their definition is metatheoretic

and appeals to regression, a syntactic notion. This makes it hard to

use their definition in the context of knowledge. To see the prob-

lem, consider the case where our example agent does not know

in 𝑆0 whether block 𝐵1 is fragile. Then it can be shown that she

does not know in 𝜎1 what the cause of Φ1 is. This is because there

is a 𝐾-alternative situation 𝑆1
0
in 𝑆0 where fragile(𝐵1) is true and

so broken(𝐵1) is achieved in 𝑑𝑜 (𝑑𝑟𝑜𝑝 (𝐵1), 𝑆1
0
), and it remains true

after that (see Figure 1). Hence the causal chain obtained relative

to setting ⟨𝑆1
5
,Φ1⟩ (where 𝑆1

5
= 𝑑𝑜 ([drop(𝐵1), quench(𝐵1), quen−

ch(𝐵2), pickUp(𝐵1), drop(𝐵1)], 𝑆1
0
)) only includes this action. More-

over, as shown earlier, the causal chain obtained relative to ⟨𝜎1,Φ1⟩
is a different one. Thus the agent does not know in 𝜎1 what the

causes of Φ1 are. However, since in this SC language there is no ex-

pression that represents the fact that some action executed in some

situation is a cause of some effect, there is no simple way of saying

that the agent knows/does not know that this is the case. In other

words, if we had a construct Causes(. . .) defined in the language

of the SC, then we could have written Know(Causes(. . .), 𝜎1).
Thus, to refer to causal knowledge, we will incorporate such

a construct within the language of SC. For this, we will need to

generalize the notion of causal settings (see below). We start by

introducing the notion of epistemic dynamic formulae in the SC.

Definition 4.1. Let ®𝑥 , \𝑎 , and ®𝑦 respectively range over object

terms, action terms, and object and action terms. The class of

situation-suppressed epistemic dynamic formulae 𝜓 is defined in-

ductively using the following grammar:

𝜓 ::=𝑃 (®𝑥) | 𝑃𝑜𝑠𝑠 (\𝑎) | After (\𝑎,𝜓) | ¬𝜓 | 𝜓1∧𝜓2 | ∃®𝑦.𝜓 | 𝐾𝑛𝑜𝑤 (𝜓).
That is, an epistemic dynamic formula can be a situation-suppressed

fluent, a formula that says that some action \𝑎 is possible, a formula

that some epistemic dynamic formula holds after some action has

occurred, a formula that can built from other epistemic dynamic

formulae using the usual connectives, or a formula that the agent

knows that some epistemic dynamic formula holds. Note that𝜓 can

have quantification over object and action variables, but must not

include quantification over situations or ordering over situations (i.e.

<). Also, while it may include knowledge modalities, 𝐾-relations

that do not come from the expansion of Know are not permitted.

We will use lower-case𝜓 for epistemic dynamic formulae. If𝜓 does

not include the 𝐾𝑛𝑜𝑤 modality, we call it a dynamic formula.
We use𝜓 [𝑠] to denote the formula obtained from𝜓 by restoring

the appropriate situation argument into all fluents in𝜓 . Formally:

Definition 4.2.

𝜓 [𝑠] def

=

𝑃 (®𝑥, 𝑠) if𝜓 is 𝑃 (®𝑥)
Poss(\𝑎, 𝑠) if𝜓 is Poss(\𝑎)
𝜓 ′[𝑑𝑜 (\𝑎, 𝑠)] if𝜓 is After (\𝑎,𝜓 ′)
¬(𝜓 ′[𝑠]) if𝜓 is (¬𝜓 ′)
𝜓1 [𝑠] ∧𝜓2 [𝑠] if𝜓 is (𝜓1 ∧𝜓2)
∃®𝑦. (𝜓 ′[𝑠]) if𝜓 is (∃®𝑦. 𝜓 ′)
∀𝑠 ′. 𝐾 (𝑠 ′, 𝑠) ⊃ (𝜓 ′[𝑠 ′]) if𝜓 is 𝐾𝑛𝑜𝑤 (𝜓 ′)

In the rest of this section, we will use dynamic formulae exclusively.

Later in §6, we will come back to epistemic dynamic formulae.

We generalize causal settings by allowing effects in our frame-

work to be any (epistemic) dynamic formula𝜓 , i.e. we do not require

the effect to be uniform in 𝑠 . Also, we do not require the scenario to

be ground and it can include arbitrary (non-ground) action terms.

This generalization allows for the seamless incorporation of ac-

tual causes within the SC language, especially in the context of

knowledge.

Now, since the trace/narrative defined by 𝑠 (or more precisely,

by the situation pair 𝑆0 and 𝑠) might include multiple occurrences

of the same action, we also need a simple way to identify the situ-

ations where these actions were executed. To simplify things, we

will require that each situation is associated with a time-stamp.

When we move to knowledge, we will have different 𝐾-accessible

situations where an action occurs, so using time-stamps provides a

common reference/rigid designator for the action occurrence. The

initial situation 𝑆0 starts at time 0 and each action increments the

time-stamp by one. Thus, our theory includes the following axioms:

start (𝑆0) = 0, ∀𝑎, 𝑠, 𝑡 . start (𝑑𝑜 (𝑎, 𝑠)) = 𝑡 ≡ start (𝑠) = 𝑡 − 1.

With this, we can define a causal chain with respect to a causal

setting in our framework as a non-empty set of action-time-stamp

pairs derived from the trace 𝑠 . We don’t need to include the situa-

tion where the action was executed since the included time-stamp

uniquely represents the action’s position on the trace.

We are now ready to integrate causes of effects into the SC. We

define causes in two steps, starting with primary causes.

Definition 4.3 (Primary Cause).

CausesDirectly(𝑎, 𝑡,𝜓, 𝑠) def

=

∃𝑠𝑎 . start (𝑠𝑎) = 𝑡 ∧ (𝑆0 < 𝑑𝑜 (𝑎, 𝑠𝑎) ≤ 𝑠)
∧ ¬𝜓 [𝑠𝑎] ∧ ∀𝑠 ′.(𝑑𝑜 (𝑎, 𝑠𝑎) ≤ 𝑠 ′ ≤ 𝑠 ⊃ 𝜓 [𝑠 ′]) .

That is, an action 𝑎 executed at time 𝑡 is the primary cause of effect
𝜓 in situation 𝑠 iff 𝑎 was executed in a situation with time-stamp 𝑡

in scenario 𝑠 , 𝑎 caused𝜓 to change its truth value to true, and no

subsequent actions on the way to 𝑠 falsified𝜓 .

We next generalize this to include indirect causes.
6

Definition 4.4 (Actual Cause).

Causes(𝑎, 𝑡,𝜓, 𝑠) def

=

∀𝑃 .[∀𝑎, 𝑡, 𝑠,𝜓 .(CausesDirectly(𝑎, 𝑡,𝜓, 𝑠) ⊃ 𝑃 (𝑎, 𝑡,𝜓, 𝑠)) ∧
∀𝑎, 𝑡, 𝑠,𝜓 .(∃𝑎′, 𝑡 ′, 𝑠 ′.(CausesDirectly(𝑎′, 𝑡 ′,𝜓, 𝑠) ∧ start (𝑠 ′) = 𝑡 ′

∧ 𝑠 ′ < 𝑠 ∧ 𝑃 (𝑎, 𝑡, [Poss(𝑎′) ∧ After (𝑎′,𝜓)], 𝑠 ′))
⊃ 𝑃 (𝑎, 𝑡,𝜓, 𝑠))

] ⊃ 𝑃 (𝑎, 𝑡,𝜓, 𝑠).

Thus, Causes is defined to be the least relation 𝑃 such that if 𝑎

executed at time 𝑡 directly causes𝜓 in scenario 𝑠 then (𝑎, 𝑡,𝜓, 𝑠) is
in 𝑃 , and if 𝑎′ executed at 𝑡 ′ is a direct cause of𝜓 in 𝑠 , the time-stamp

of 𝑠 ′ is 𝑡 ′, 𝑠 ′ < 𝑠 , and (𝑎, 𝑡, [Poss(𝑎′) ∧After (𝑎′,𝜓)], 𝑠 ′) is in 𝑃 (i.e. 𝑎

executed at 𝑡 is a direct or indirect cause of [Poss(𝑎′) ∧After (𝑎′,𝜓)]
in 𝑠 ′), then (𝑎, 𝑡,𝜓, 𝑠) is in 𝑃 . Here the effect [Poss(𝑎′)∧After (𝑎′,𝜓)]
requires 𝑎′ to be executable and𝜓 to hold after 𝑎′.

Note that, the above definitions can handle the trickier case of

conditional effects. To see this, consider a simple example, where

6
In this, we need to quantify over situation-suppressed epistemic dynamic formulae.

Thus we must encode such formulae as terms and formalize their relationship to the

associated situation calculus formulae. This is tedious but can be done essentially

along the lines of [10]. We assume that we have such an encoding and use formulae as

terms directly.

fluents fragile(𝐵2) and broken(𝐵2) are both false initially; as axiom-

atized, for any situation 𝑠 , action quench(𝐵2) executed in 𝑠 achieves
fragile(𝐵2), and drop(𝐵2) executed in 𝑠 achieves broken(𝐵2), but
only when fragile(𝐵2) holds. As expected, it follows from our defini-

tions thatCausesDirectly(quench(𝐵2), 0, fragile(𝐵2), 𝑑𝑜 (quench(𝐵2),
𝑆0)) and CausesDirectly(drop(𝐵2), 1, broken(𝐵2), 𝑑𝑜 ([quench(𝐵2),
drop(𝐵2)], 𝑆0)). Moreover, quench(𝐵2) executed at 0 can be shown

to be the indirect cause of the conditional effect broken(𝐵2),7 i.e.
Causes(quench(𝐵2), 0, broken(𝐵2), 𝑑𝑜 ([quench(𝐵2), drop(𝐵2)], 𝑆0)).
This is indeed the case since Poss(drop(𝐵2)) ∧ After (drop(𝐵2),
broken(𝐵2)) can be shown to hold in 𝑑𝑜 (quench(𝐵2), 𝑆0), and thus

by Definition 4.3, CausesDirectly(quench(𝐵2), 0, [Poss(drop(𝐵2)) ∧
After (drop(𝐵2), broken(𝐵2))], 𝑑𝑜 (quench(𝐵2), 𝑆0)), and hence by

this and Definition 4.4, it follows that Causes(quench(𝐵2), 0,

broken(𝐵2), 𝑑𝑜 ([quench(𝐵2), drop(𝐵2)], 𝑆0)).

Example (Cont’d). Assume that the axioms for start are included
in D𝑏𝑤 . Then the following lists the causes of Φ1 in 𝜎1.

Proposition 4.5 (Causes in 𝜎1).

D𝑏𝑤 |= Causes (drop (𝐵1), 0,Φ1, 𝜎1) ∧ Causes (quench(𝐵1), 1,Φ1, 𝜎1)
∧ Causes (pickUp (𝐵1), 3,Φ1, 𝜎1) ∧ Causes (drop (𝐵1), 4,Φ1, 𝜎1)
∧ ¬Causes (quench(𝐵2), 2,Φ1, 𝜎1) .

On the other hand, if we had modifiedD𝑏𝑤 to include, instead of

Axiom (ℎ), that only 𝐵1 is initially fragile, i.e. (ℎ′) .∀𝑏.fragile(𝑏, 𝑆0)
≡ 𝑏 = 𝐵1, then the causes of Φ1 in 𝜎1 would have been as follows:

Proposition 4.6.

D𝑏𝑤 \ {(ℎ)} ∪ {(ℎ′)} |=
∀𝑎, 𝑡 . Causes(𝑎, 𝑡,Φ1, 𝜎1) ≡ 𝑎 = drop(𝐵1) ∧ 𝑡 = 0.

5 CAUSAL KNOWLEDGE, SENSING, AND THE
DYNAMICS OF CAUSAL KNOWLEDGE

Having defined Causes(𝑎, 𝑡,𝜓, 𝑠), we can now use it just like any

other formula in the context of Know. We can state that an agent

knows in some situation 𝑠 that 𝑎 executed at time 𝑡 is a cause of

an effect 𝜓 , i.e. Know(Causes(𝑎, 𝑡,𝜓, 𝑛𝑜𝑤), 𝑠), which by definition

of knowledge means that ∀𝑠 ′. 𝐾 (𝑠 ′, 𝑠) ⊃ Causes(𝑎, 𝑡,𝜓, 𝑠 ′), i.e. in
all her epistemic alternatives 𝑠 ′, 𝑎 at 𝑡 is a cause of𝜓 .

Returning to our example, assume that the agent initially knows

that all the blocks are intact and that she is only holding block 𝐵1:

(𝑗) . Know(∀𝑏. ¬broken(𝑏), 𝑆0),
(𝑘). Know(∀𝑏. holding(𝑏) ≡ 𝑏 = 𝐵1, 𝑆0) .

Thus ¬broken(𝐵1) ∧ ¬broken(𝐵2) ∧ holding(𝐵1) ∧ ¬holding(𝐵2)
holds in all of her initial 𝐾-accessible worlds/situations. Assume

that the agent does not know whether the blocks are fragile:

(𝑙). ∀𝑏. ¬KWhether (fragile(𝑏), 𝑆0) .

Thus, initially there are at least four possible worlds that are 𝐾-

related to the initial situation 𝑆0, say 𝑆0, 𝑆
1

0
, 𝑆2

0
, and 𝑆3

0
. Each of

these worlds assigns a different interpretation to the fragility of the

7
Recall that broken(𝐵2) ’s achievement via drop (𝐵2) is conditioned on fragile (𝐵2) .

blocks 𝐵1 and 𝐵2. In particular, assume that:

(𝑚) . ∀𝑏. fragile(𝑏, 𝑆1
0
), (𝑛) . ∀𝑏. fragile(𝑏, 𝑆2

0
) ≡ 𝑏 = 𝐵1,

(𝑜). ∀𝑏. fragile(𝑏, 𝑆3
0
) ≡ 𝑏 = 𝐵2 .

See Figure 1 for 𝑆0 and 𝑆1
0
. Now, assume that D𝐾

𝑏𝑤
denotes our

axiomatization of the blocks world with knowledge. Then we can

show that in situation 𝜎1, the agent only knows that drop(𝐵1)
executed at time 0 is a cause of Φ1 and that quench(𝐵2) executed
at 2 is not, but does not know whether other actions on the trace

𝜎1 are causes:

Proposition 5.1 (Knowledge in 𝜎1).

D𝐾
𝑏𝑤

|= Know(Causes(drop(𝐵1), 0,Φ1), 𝜎1) ∧
Know(¬Causes(quench(𝐵2), 2,Φ1), 𝜎1) ∧

¬KWhether (Causes(quench(𝐵1), 1,Φ1), 𝜎1)) ∧
¬KWhether (Causes(pickUp(𝐵1), 3,Φ1), 𝜎1)) ∧
¬KWhether (Causes(drop(𝐵1), 4,Φ1), 𝜎1)) .

Thus the agent does not know the causal chain: there are com-

mon elements, e.g. drop(𝐵1) executed at time 0, but for other actions

such as drop(𝐵1) executed at 4, the agent is unsure.

However, if the agent were to know in 𝑆0 that 𝐵1 is not fragile,

then she would have known the causal chain in 𝜎1:

Proposition 5.2 (Knowledge in 𝜎1 (Alternate)).

D𝐾
𝑏𝑤

\ {(𝑙)} ∪ {Know(¬fragile(𝐵1), 𝑆0)} |=
∀𝑎, 𝑡 . Causes(𝑎, 𝑡,Φ1, 𝜎1) ≡ Know(Causes(𝑎, 𝑡,Φ1), 𝜎1).

Now, let us introduce a sensing action 𝑠𝑒𝑛𝑠𝑒𝑔 (𝑏) that senses
whether block 𝑏 is made of glass. We introduce a fluent 𝑔𝑙𝑎𝑠𝑠 (𝑏, 𝑠)
to state that an object is made of glass. We need to specify its SSA:

(𝑝). ∀𝑏, 𝑎, 𝑠 . 𝑔𝑙𝑎𝑠𝑠 (𝑏, 𝑑𝑜 (𝑎, 𝑠)) ≡ 𝑔𝑙𝑎𝑠𝑠 (𝑏, 𝑠).
Also, we need a sensing fluent for 𝑠𝑒𝑛𝑠𝑒𝑔 ; this is specified as follows:

(𝑞). ∀𝑏, 𝑛, 𝑠 . 𝑆𝐹 (𝑠𝑒𝑛𝑠𝑒𝑔 (𝑏), 𝑠) ≡ 𝑔𝑙𝑎𝑠𝑠 (𝑏, 𝑠) .
That is, 𝑆𝐹 (𝑠𝑒𝑛𝑠𝑒𝑔 (𝑏)) returns the sensing value 𝑡𝑟𝑢𝑒 iff block 𝑏 is

made of glass. Finally, we need an associated initial state axiom,

that, initially it is known that a block is fragile iff it is made of glass:

(𝑟) . ∀𝑏. Know(fragile(𝑏) ≡ 𝑔𝑙𝑎𝑠𝑠 (𝑏), 𝑆0) .
But initially the agent still does not know which blocks are frag-

ile/made of glass. Given this, we can show that despite the incom-

pleteness of her knowledge (about the fragility of 𝐵1) in the initial

situation, the agent will learn all the causes of Φ1 after she senses

whether block 𝐵1 is made of glass in 𝜎1.

Proposition 5.3 (Knowledge in 𝑑𝑜 (𝑠𝑒𝑛𝑠𝑒𝑔 (𝐵1), 𝜎1) – I).

D𝐾
𝑏𝑤

|=Know (Causes (drop (𝐵1), 0,Φ1) ∧ Causes (quench(𝐵1), 1,Φ1)
∧ Causes (pickUp (𝐵1), 3,Φ1) ∧ Causes (drop (𝐵1), 4,Φ1),

𝑑𝑜 (𝑠𝑒𝑛𝑠𝑒𝑔 (𝐵1), 𝜎1)) .

To see why this is the case, first note that it follows from D𝐾
𝑏𝑤

that ¬𝑔𝑙𝑎𝑠𝑠 (𝐵1) holds in 𝜎1. This is because, since by Axiom (ℎ),
𝐵1 was not fragile in 𝑆0, and by Axiom (𝑟), every fragile block in

𝑆0 is made of glass, it follows that 𝐵1 is not made of glass in 𝑆0.

Moreover, by Axiom (𝑝) and other axioms inD𝐾
𝐵𝑊

, 𝐵1 remains non-

glass after any sequence of actions, in particular in 𝜎1. Furthermore,

using similar reasoning it can be shown that the agent knows in 𝜎1
that any block that is made of glass now was fragile initially and

that vice versa. Finally, by this and the SSA for 𝐾 , in all situations

that are 𝐾-accessible in 𝑑𝑜 (𝑠𝑒𝑛𝑠𝑒𝑔 (𝐵1), 𝜎1), ¬𝑔𝑙𝑎𝑠𝑠 (𝐵1) holds, and
these are rooted in an initial situation where ¬fragile(𝐵1) holds.
Thus in all her 𝐾-alternate worlds in 𝑑𝑜 (𝑠𝑒𝑛𝑠𝑒𝑔 (𝐵1), 𝜎1), all causes
are the same since all of these worlds start with a situation where

¬fragile(𝐵1) holds.
Moreover, we can show that she will also learn all the non-causes,

in particular that quench(𝐵2) executed at time 2 is not a cause:

Proposition 5.4 (Knowledge in 𝑑𝑜 (𝑠𝑒𝑛𝑠𝑒𝑔 (𝐵1), 𝜎1) – II).

D𝐾
𝑏𝑤

|= Know(¬Causes(quench(𝐵2), 2,Φ1), 𝑑𝑜 (𝑠𝑒𝑛𝑠𝑒𝑔 (𝐵1), 𝜎1)).

Properties
Let D be our formalization of causal knowledge. We now show

that our formalization has some intuitive properties. First, since

the Causes operator is defined in the language, one can expect all

the properties of knowledge (including knowledge about causes) to

follow. Indeedwe can show that logically equivalent effects have the

same causes and that full introspection holds for causal knowledge.

Next, we identify the conditions under which a (binary) sensing

action can be used to learn the causes of an effect.

Theorem 5.5 (From Ignorance to Causal Knowledge).

D |= ∀𝑠 . 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 (𝑠) ∧ ¬𝜓 [root (𝑠)] ∧𝜓 [𝑠]
∧ ∀𝑠 ′. 𝑆𝐹 (𝑠𝑒𝑛𝑠𝑒Φ, 𝑠 ′) ≡ Φ[𝑠 ′]
∧ ((Φ[𝑠] ∧ Φ+ (𝜓,Φ, 𝑠)) ∨ (¬Φ[𝑠] ∧ Φ− (𝜓,Φ, 𝑠))
⊃ ∀𝑎, 𝑡 . KWhether (Causes(𝑎, 𝑡,𝜓), 𝑑𝑜 (𝑠𝑒𝑛𝑠𝑒Φ, 𝑠)),

where:

Φ+ (𝜓,Φ, 𝑠) def

= (∀𝑠 ′. 𝐾 (𝑠 ′, 𝑠) ∧ Φ[𝑠 ′]
⊃ (∀𝑎, 𝑡 . Causes(𝑎, 𝑡,𝜓, 𝑠 ′) ≡ Causes(𝑎, 𝑡,𝜓, 𝑠))),

Φ− (𝜓,Φ, 𝑠) def

= (∀𝑠 ′. 𝐾 (𝑠 ′, 𝑠) ∧ ¬Φ[𝑠 ′]
⊃ (∀𝑎, 𝑡 . Causes(𝑎, 𝑡,𝜓, 𝑠 ′) ≡ Causes(𝑎, 𝑡,𝜓, 𝑠))),

and,

root (𝑠) def

=

{
root (𝑠 ′) if 𝑠 = 𝑑𝑜 (𝑎′, 𝑠 ′)
𝑠 otherwise.

That is, for any action 𝑎 and time-stamp 𝑡 , after performing the

binary sensing action 𝑠𝑒𝑛𝑠𝑒Φ in 𝑠 , an agent will learn whether 𝑎

executed at time 𝑡 is a cause of some effect𝜓 in scenario 𝑠 , provided

that 𝑠𝑒𝑛𝑠𝑒Φ senses the value of Φ, and either Φ holds in 𝑠 and in

all the 𝐾-accessible worlds 𝑠 ′ in 𝑠 where Φ holds, the causes of

𝜓 in 𝑠 ′ are the same as the causes of 𝜓 in 𝑠 , or Φ does not hold

in 𝑠 and in all the 𝐾-accessible worlds 𝑠 ′ in 𝑠 where Φ does not

hold, the causes of 𝜓 in 𝑠 ′ are the same as those of 𝜓 in 𝑠 . Thus,

when this is the case, the agent can use the sensing action 𝑠𝑒𝑛𝑠𝑒Φ to

learn about all the causes of𝜓 . Note that, the first three conjuncts

𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 (𝑠) ∧ ¬𝜓 [root (𝑠)] ∧ 𝜓 [𝑠] simply guarantee that ⟨𝑠,𝜓 ⟩
is a proper causal setting (see Definition 3.2). Theorem 5.5 can be

generalized to include non-binary sensing actions and knowledge-

producing actions such as an inform [21].

We also study the conditions under which action executions do

not alter causal knowledge.

Theorem 5.6 (Persistence of Causal Knowledge).

D |= ∀𝑠, 𝑠 ′, 𝑠∗, 𝑎, 𝑡 . 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 (𝑠) ∧ ¬𝜓 [root (𝑠)] ∧𝜓 [𝑠]
∧ KWhether (Causes(𝑎, 𝑡,𝜓), 𝑠) ∧ 𝑠 < 𝑠 ′

∧ (∀𝑠∗ . 𝑠 ≤ 𝑠∗ ≤ 𝑠 ′ ⊃ Know(𝜓, 𝑠∗))
⊃ KWhether (Causes(𝑎, 𝑡,𝜓), 𝑠 ′).

That is, if an agent knows in 𝑠 whether an action 𝑎 executed at time

𝑡 is a cause of an effect 𝜓 , she will continue to know whether 𝑎

executed at 𝑡 is a cause of𝜓 in a future situation 𝑠 ′, provided that

her knowledge of the effect𝜓 does not change between 𝑠 and 𝑠 ′.
However, this is not the case in general. For instance, if the agent

ceases to know that𝜓 , then in this new situation she will not know

what actions are causes. On the other hand, if she knows the causes

of𝜓 in 𝑠 , knows that𝜓 became false in some situation after 𝑠 , but

knows that𝜓 was reachieved later in 𝑠 ′, then she may or may not

know the causes in 𝑠 ′, but some of these causes will certainly be

different from what she knew before in 𝑠 .

Finally, we can show that when the scenario 𝑠 in the causal

setting is ground, our definition of Causes expands to a set of first-

order formulae, from which causes can be computed via first-order

entailment using regression [31] and knowledge regression [32].

Theorem 5.7. If 𝑠 is a ground situation term, 𝑎 is a ground action
term, and 𝑡 is an integer, then Causes(𝑎, 𝑡,𝜓, 𝑠) is equivalent to a
regressable formula.

Proof Sketch. If 𝑎 executed at time 𝑡 is a primary cause of𝜓 in

𝑠 , it is equivalent to CausesDirectly(𝑎, 𝑡,𝜓, 𝑠), which by Definition

4.3 is regressable when 𝑠 is ground. On the other hand, if 𝑎 executed

at 𝑡 is an indirect cause of𝜓 in 𝑠 , it can be shown using Definition 4.4

that Causes(𝑎, 𝑡,𝜓, 𝑠) is equivalent to Causes≤𝑛 (𝑎, 𝑡,𝜓, 𝑠) for some𝑛.

The latter states that action 𝑎 executed at 𝑡 causes𝜓 in 𝑠 in a causal

chain of at most 𝑛 steps, and can be expanded to a conjunction of 𝑛

or less primary cause assertions, i.e. CausesDirectly constructs (see

[22] for the formal details). Thus this too is regressable. □

Thus while our formulation is second-order, for ground situations

computing causes does not require second-order logic.

6 REASONING ABOUT EPISTEMIC CAUSES
AND EFFECTS

To enable reasoning about epistemic effects, we allow effects in

our framework to be epistemic dynamic formulae, rather than just

dynamic formulae. Note that Know in such a formula can take an

epistemic dynamic formula𝜓 as argument. As shown in Definition

4.2, 𝐾𝑛𝑜𝑤 (𝜓) [𝑠] gets expanded to ∀𝑠 ′. 𝐾 (𝑠 ′, 𝑠) ⊃ 𝜓 [𝑠 ′] . We will

also allow actions to have knowledge preconditions; 𝐾𝑛𝑜𝑤 con-

structs in the context of action preconditions are only allowed to

take regular situation-suppressed formulae as argument.

We use a second example to illustrate epistemic causes and ef-

fects. We show that as expected, knowledge-producing actions can

be causes of epistemic effects, but more interestingly, they can also

be causes of physical effects.

In this example, we have a thief 𝑇1 who likes to go to a bank

𝐵1, peek at the customers while they enter their credit card PINs,

physically steal the cards, and then withdraw money using the

cards and their PINs. There are also actions for waiting in the queue

at the bank, leaving the queue, and drinking complimentary coffee

at the bank. The actions in this domain can be specified as follows:

Poss (goTo(𝑎𝑔𝑡, b), 𝑠) ≡ ¬𝑎𝑡 (𝑎𝑔𝑡, b, 𝑠),
Poss (waitInQueue (𝑎𝑔𝑡,𝑏), 𝑠) ≡ 𝑎𝑡 (𝑎𝑔𝑡,𝑏, 𝑠),
Poss (leaveQueue (𝑎𝑔𝑡,𝑏), 𝑠) ≡ waiting (𝑎𝑔𝑡,𝑏, 𝑠),
Poss (drinkCoffee (𝑎𝑔𝑡, b), 𝑠) ≡ 𝑎𝑡 (𝑎𝑔𝑡, b, 𝑠) ∧ ¬waiting (𝑎𝑔𝑡, b, 𝑠),
Poss (steal (𝑎𝑔𝑡, 𝑐𝑐), 𝑠) ≡ ∃𝑎𝑔𝑡 ′, 𝑏.(ℎ𝑎𝑠 (𝑎𝑔𝑡 ′, 𝑐𝑐, 𝑠) ∧ 𝑎𝑡 (𝑎𝑔𝑡 ′, 𝑏, 𝑠)

∧ 𝑎𝑡 (𝑎𝑔𝑡,𝑏, 𝑠) ∧ 𝑎𝑔𝑡 ′ ≠ 𝑎𝑔𝑡),
Poss (peekPIN (𝑎𝑔𝑡, 𝑐𝑐), 𝑠) ≡ ∃𝑎𝑔𝑡 ′, 𝑏.(ℎ𝑎𝑠 (𝑎𝑔𝑡 ′, 𝑐𝑐, 𝑠) ∧ 𝑎𝑡 (𝑎𝑔𝑡 ′, 𝑏, 𝑠)

∧ 𝑎𝑡 (𝑎𝑔𝑡,𝑏, 𝑠) ∧ 𝑎𝑔𝑡 ′ ≠ 𝑎𝑔𝑡),
Poss (withdraw (𝑎𝑔𝑡, 𝑐𝑐, 𝑎𝑚𝑡), 𝑠) ≡

ℎ𝑎𝑠 (𝑎𝑔𝑡, 𝑐𝑐, 𝑠) ∧ KRef (𝑎𝑔𝑡, PIN (𝑐𝑐), 𝑠) .

Thus, e.g., an agent 𝑎𝑔𝑡 can peek the PIN of a credit card 𝑐𝑐 in some

situation 𝑠 iff 𝑎𝑔𝑡 and the agent that currently has 𝑐𝑐 are at the same

bank in 𝑠 . Also, 𝑎𝑔𝑡 can withdraw 𝑎𝑚𝑡 dollars from credit card 𝑐𝑐

in 𝑠 iff she has 𝑐𝑐 in 𝑠 and she knows in 𝑠 what the PIN of 𝑐𝑐 is.

There is at least one customer 𝐴1 and a credit card 𝐶𝐶1 that 𝐴1

has. The fluents in this domain are 𝑎𝑡 (𝑎𝑔𝑡, 𝑏, 𝑠), waiting(𝑎𝑔𝑡, 𝑏, 𝑠),
has(𝑎𝑔𝑡, 𝑐𝑐, 𝑠), owns(𝑎𝑔𝑡, 𝑛, 𝑠), and PIN (𝑐𝑐, 𝑠), whichmean that agent

𝑎𝑔𝑡 is at bank 𝑏 in situation 𝑠 , 𝑎𝑔𝑡 is waiting in the queue at 𝑏 in 𝑠 ,

𝑎𝑔𝑡 has credit card 𝑐𝑐 in 𝑠 , 𝑎𝑔𝑡 owns 𝑛 dollars in 𝑠 , and PIN (𝑐𝑐, 𝑠) is
the PIN of credit card 𝑐𝑐 in situation 𝑠 . The successor-state axioms

for these are as follows:

𝑎𝑡 (𝑎𝑔𝑡,𝑏,𝑑𝑜 (𝑎, 𝑠)) ≡ 𝑎 = goTo(𝑎𝑔𝑡,𝑏)
∨ (𝑎𝑡 (𝑎𝑔𝑡,𝑏, 𝑠) ∧ ¬∃𝑏′. 𝑎 = goTo(𝑎𝑔𝑡,𝑏′)),

waiting (𝑎𝑔𝑡,𝑏,𝑑𝑜 (𝑎, 𝑠)) ≡ 𝑎 = waitInQueue (𝑎𝑔𝑡,𝑏)
∨ (waiting (𝑎𝑔𝑡,𝑏, 𝑠) ∧ ¬𝑎 = leaveQueue (𝑎𝑔𝑡,𝑏)),

has (𝑎𝑔𝑡, 𝑐𝑐,𝑑𝑜 (𝑎, 𝑠)) ≡ 𝑎 = steal (𝑎𝑔𝑡, 𝑐𝑐)
∨ (has (𝑎𝑔𝑡, 𝑐𝑐, 𝑠) ∧ ¬∃𝑎𝑔𝑡 ′.(𝑎𝑔𝑡 ′≠ 𝑎𝑔𝑡 ∧ 𝑎 = steal (𝑎𝑔𝑡 ′, 𝑐𝑐))),

owns (𝑎𝑔𝑡, 𝑎𝑚𝑡,𝑑𝑜 (𝑎, 𝑠)) ≡ ∃𝑛,𝑛′, 𝑐𝑐. (owns (𝑎𝑔𝑡, 𝑛, 𝑠) ∧
𝑎 = withdraw (𝑎𝑔𝑡, 𝑐𝑐, 𝑛′) ∧ 𝑎𝑚𝑡 = 𝑛 + 𝑛′)

∨ (owns (𝑎𝑔𝑡, 𝑎𝑚𝑡, 𝑠) ∧ ¬∃𝑛, 𝑐𝑐. 𝑎 = withdraw (𝑎𝑔𝑡, 𝑐𝑐, 𝑛)),
PIN (𝑐𝑐,𝑑𝑜 (𝑎, 𝑠)) = 𝑝 ≡ PIN (𝑐𝑐, 𝑠) = 𝑝.

These are all self-explanatory.

The initial state is specified as follows:
8

Know (𝑎𝑔𝑡, owns (𝑇1, 0), 𝑆0), Know (𝑎𝑔𝑡, has (𝐴1,𝐶𝐶1), 𝑆0),
Know (𝑎𝑔𝑡,¬𝑎𝑡 (𝑇1, 𝐵1), 𝑆0), Know (𝑎𝑔𝑡, 𝑎𝑡 (𝐴1, 𝐵1), 𝑆0),
PIN (𝐶𝐶1, 𝑆0) = 12345, ¬KRef (𝑇1, PIN (𝐶𝐶1), 𝑆0) .

That is, all agents know in the actual initial situation 𝑆0 that agent

𝑇1 has $0, that agent 𝐴1 has credit card 𝐶𝐶1, that 𝑇1 is not at bank

𝐵1, and that 𝐴1 is at 𝐵1. Also, the PIN of 𝐶𝐶1 in 𝑆0 is 12345 and 𝑇1
does not know what PIN (𝐶𝐶1) refers to in 𝑆0.

The following sensing-fluent axiom specifies action peekPIN :
sff (peekPIN (𝑎𝑔𝑡, 𝑐𝑐), 𝑠) = PIN (𝑐𝑐, 𝑠) .

Thus, peekPIN (𝑎𝑔𝑡, 𝑐𝑐) tells 𝑎𝑔𝑡 the PIN of the 𝑐𝑐 in 𝑠 . As per the

SSA for 𝐾 , other agents see that the peekPIN action has occurred,

but do not learn the PIN.

Finally, we assume that other necessary axioms such as unique-

names for actions axioms are also specified.

Now, consider the following scenario: 𝜎2 = 𝑑𝑜 ([goTo(𝑇1, 𝐵1),
waitInQueue(𝑇1, 𝐵1), peekPIN (𝑇1,𝐶𝐶1), leaveQueue(𝑇1, 𝐵1), steal(𝑇1,
8
Following [33], here we use an agent argument in Know.

𝐶𝐶1), drinkCoffee(𝑇1, 𝐵1),withdraw(𝑇1,𝐶𝐶1, 500)], 𝑆0), i.e. 𝑇1 goes
to bank 𝐵1, waits in the queue there, peeks at the PIN of credit card

𝐶𝐶1, leaves the queue, steals𝐶𝐶1, drinks coffee, and then withdraws

$500 from 𝐶𝐶1. We are interested in computing the causes of both

𝜓1

bank = KRef (𝑇1, PIN (𝐶𝐶1)) and𝜓2

bank = owns(𝑇1, 500) .
Let D𝐾

bank be our example theory. Then we can show that 𝑇1
knows in 𝜎2 that the causes of her knowing the PIN of 𝐶𝐶1 are her

actions of going to the bank executed at time 0 and peeking at the

PIN of 𝐶𝐶1 executed at time 2:

Proposition 6.1.

D𝐾
bank |= ∀𝑎, 𝑡 . Know(𝑇1,Causes(𝑎, 𝑡,𝜓1

bank), 𝜎2) ≡
(𝑎 = goTo(𝑇1, 𝐵1) ∧ 𝑡 = 0) ∨ (𝑎 = peekPIN (𝑇1,𝐶𝐶1) ∧ 𝑡 = 2) .

As expected, our epistemic effect𝜓1

bank is caused by the knowledge-

producing action peekPIN (𝑇1,𝐶𝐶1) executed at time 2. Note that,

the SSA for 𝐾 drops from the set of 𝐾-accessible situations in

𝑑𝑜 (peekPIN (𝑇1,𝐶𝐶1), 𝑆0) the situations where the sensed fluent

function sff (peekPIN (𝑇1,𝐶𝐶1)) has a different value from that in

the actual situation, and thus afterwards the agent gets to know

the value of the PIN, and that of the sensed fluent. Also, since

peekPIN (𝑇1,𝐶𝐶1) was executable only when 𝑇1 is in the bank 𝐵1,

which is brought about by goTo(𝑇1, 𝐵1) executed at time 0, it is also

a cause of𝜓1

bank in 𝜎2.

More interestingly, we can show that 𝑇1 knows in 𝜎2 that the

causes of her having $500 include, among other actions, the sensing

action of her peeking at the PIN of 𝐶𝐶1 executed at time 2:

Proposition 6.2.

D𝐾
bank |= ∀𝑎, 𝑡 . Know(𝑇1,Causes(𝑎, 𝑡,𝜓2

bank), 𝜎2) ≡
(𝑎 = goTo(𝑇1, 𝐵1) ∧ 𝑡 = 0) ∨ (𝑎 = peekPIN (𝑇1,𝐶𝐶1) ∧ 𝑡 = 2) ∨
(𝑎 = steal(𝑇1,𝐶𝐶1)∧𝑡 = 4)∨(𝑎 = withdraw(𝑇1,𝐶𝐶1, 500)∧𝑡 = 6).

Thus, interestingly, our framework allows causes of physical ef-

fects to be knowledge-producing actions. In particular, this happens

when physical actions have knowledge preconditions. For instance,

in the above example, one of the preconditions of withdrawing

money from a credit card 𝑐𝑐 is to know what PIN (𝑐𝑐) refers to.
When the action history is ground, it can be shown that one can

use knowledge regression [32] to compute causal knowledge, e.g.,

Know(Causes(goTo(𝑇1, 𝐵1), 0,𝜓1

bank), 𝜎2) above; see [22] for details.

7 DISCUSSION
Based on a formal notion of causality [3], in this paper we devel-

oped a logic of actual causes and proposed an account of causal

knowledge in the SC. Our account allows agents to have incomplete

initial knowledge and can deal with epistemic causes and effects.

We showed that it is possible to have different causes of the same

effect in different epistemic alternatives. Thus, as expected, an agent

may or may not know all the causes of an effect, and can even know

some causes while not being sure about others.

While analyzing actual causes is quite subtle and involves tricky

cases including preemption or overdetermination, we did not dis-

cuss these here. For instance, we could have argued that in our first

example, drop(𝐵1) executed at time 4 is not a cause of Φ1 in 𝑆
1

5
since

it was preempted by the earlier drop(𝐵1) action executed at time 0:

the second drop action would have been a cause had the first one not

brought about the effect. Nonetheless, we emphasize that our focus

here was on studying the epistemics of causality by embedding an

existing definition of causation [3] in the SC language rather than

proposing a new one. It has been shown that the definition of actual

cause in [3] handles –within its limitations– all the paradigmatic ex-

amples of causation correctly; see [2, 3] for details. Moreover, Khan

and Soutchanski [23] recently showed that their own definition of

actual cause derived from a counterfactual standpoint is equivalent

to this definition. They also related their definition to a regularity

account of causation [26], thus integrating two highly influential

but opposing approaches to causation. Also, the counterfactuals

they studied preserve the underlying causal relations, which is

desirable; this is in contrast to many SEM-based definitions [15],

where the counterfactuals are “explicitly nonforetracking” [18].
9

Our account of causal knowledge relies on key features of the

SC and basic action theories, such as SSAs. This also allows the

use of knowledge regression to compute causes when the action

history is ground. To move to a different logical framework one

would need similar machinery as in the SC. For how this can be

provided in Dynamic Epistemic Logic, see [36].

Recently, there has been some work that formalizes causality

in an epistemic context. For example, while defining responsibil-

ity/blame in legal cases, Chockler et al. [8] modeled an agent’s

uncertainty of the causal setting using an “epistemic state”, which

is a pair (𝐾, 𝑃𝑟), where 𝐾 is a set of causal settings and 𝑃𝑟 is a

probability distribution over 𝐾 . Their model is based on structural

equations. We on the other hand study the epistemics of causality

based on the more expressive first-order formalism proposed by

Batusov and Soutchanski [3]. Moreover, unlike [8], our account

incorporates a formal model of domain dynamics and knowledge

change. This allows for an interesting interplay between causality

and knowledge. For instance, in our framework it is possible to

specify a domain where the agent does not know the causes of an

effect in some situation, but learns them after performing some

sensing action. To the best of our knowledge, ours is the only formal

account of actual causality that investigates the dynamics of causal

knowledge and allows knowledge-producing actions to be causes.

Among other related work, let us mention logics of “sees to it that”

(STIT), which attempt to capture intentional choice/responsibility

of agents [6, 17]. Here we are more interested in capturing the

causal chain of actions that led to an effect rather than attributing

responsibility to agents. Some of our future work include defining

responsibility and blame using our formalization.

Here, we assumed that all actions were fully observable; incorpo-

rating partial observability of actions as in [1] would yield amore ex-

pressive framework. Moreover, here we focused on knowledge and

not belief. The relation between actual causes and causal knowledge

becomes more intricate if we incorporate the latter. Also, here we

focus on deterministic actions only. However, there are several pro-

posals on how one can reason about non-deterministic/stochastic

actions in the SC, e.g. [1, 5, 7]. Dealing with these is future work.

Finally, in the future we would like to investigate reasoning that

involves multiple agents and examine how regression can be em-

ployed to evaluate complex causal knowledge queries.

9
Hall [12] pointed out that the analysis of actual causation using non-actual worlds

where the causal relations themselves do not hold is counterintuitive.

REFERENCES
[1] Fahiem Bacchus, Joseph Y. Halpern, and Hector J. Levesque. 1999. Reasoning

about Noisy Sensors and Effectors in the Situation Calculus. Artificial Intelligence
111, 1-2 (1999), 171–208. https://doi.org/10.1016/S0004-3702(99)00031-4

[2] Vitaliy Batusov and Mikhail Soutchanski. 2017. Situation Calculus Semantics

for Actual Causality. In Proceedings of the Thirteenth International Symposium
on Commonsense Reasoning, COMMONSENSE 2017, London, UK, November 6-8,
2017 (CEUR Workshop Proceedings, Vol. 2052), Andrew S. Gordon, Rob Miller, and

György Turán (Eds.). CEUR-WS.org. http://ceur-ws.org/Vol-2052/paper2.pdf

[3] Vitaliy Batusov and Mikhail Soutchanski. 2018. Situation Calculus Semantics

for Actual Causality. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 1744–1752.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16891

[4] Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard J. Trefler.

2012. Explaining Counterexamples using Causality. Formal Methods in System
Design 40, 1 (2012), 20–40. https://doi.org/10.1007/s10703-011-0132-2

[5] Vaishak Belle and Hector J. Levesque. 2018. Reasoning about Discrete and Con-

tinuous Noisy Sensors and Effectors in Dynamical Systems. Artificial Intelligence
262 (2018), 189–221. https://doi.org/10.1016/j.artint.2018.06.003

[6] Nuel Belnap, Michel Perloff, and Ming Xu. 2001. Facing the Future: Agents and
Choices in our Indeterministic World. Oxford University Press.

[7] Craig Boutilier, Raymond Reiter, and Bob Price. 2001. Symbolic Dynamic Pro-

gramming for First-Order MDPs. In Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA,
August 4-10, 2001, Bernhard Nebel (Ed.). Morgan Kaufmann, 690–700.

[8] Hana Chockler, Norman E. Fenton, Jeroen Keppens, and David A. Lagnado. 2015.

Causal Analysis for Attributing Responsibility in Legal Cases. In Proceedings of
the 15th International Conference on Artificial Intelligence and Law, ICAIL 2015,
San Diego, CA, USA, June 8-12, 2015, Ted Sichelman and Katie Atkinson (Eds.).

ACM, 33–42. https://doi.org/10.1145/2746090.2746102

[9] Thomas Eiter and Thomas Lukasiewicz. 2002. Complexity Results for Structure-

based Causality. Artificial Intelligence 142, 1 (2002), 53–89. https://doi.org/10.

1016/S0004-3702(02)00271-0

[10] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. 2000. ConGolog,

A Concurrent Programming Language based on the Situation Calculus. Artificial
Intelligence 121, 1-2 (2000), 109–169. https://doi.org/10.1016/S0004-3702(00)

00031-X

[11] Clark Glymour, David Danks, Bruce Glymour, Frederick Eberhardt, Joseph D.

Ramsey, Richard Scheines, Peter Spirtes, Choh Man Teng, and Jiji Zhang. 2010.

Actual Causation: A Stone Soup Essay. Synthese 175, 2 (2010), 169–192. https:

//doi.org/10.1007/s11229-009-9497-9

[12] Ned Hall. 2007. Structural Equations and Causation. Philosophical Studies: An
International Journal for Philosophy in the Analytic Tradition 132, 1 (2007), 109–

136.

[13] Joseph Y. Halpern. 2000. Axiomatizing Causal Reasoning. Journal of Artificial
Intelligence Research 12 (2000), 317–337. https://doi.org/10.1613/jair.648

[14] Joseph Y. Halpern. 2015. A Modification of the Halpern-Pearl Definition of

Causality. In Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
Qiang Yang and Michael J. Wooldridge (Eds.). AAAI Press, 3022–3033. http:

//ijcai.org/Abstract/15/427

[15] Joseph Y. Halpern. 2016. Actual Causality. MIT Press.

[16] Joseph Y. Halpern and Judea Pearl. 2005. Causes and Explanations: A Structural-

Model Approach. Part I: Causes. The British Journal for the Philosophy of Science
56, 4 (2005), 843–887.

[17] Andreas Herzig, Emiliano Lorini, and Nicolas Troquard. 2018. Action Theories.

In Introduction to Formal Philosophy, Sven Ove Hansson and Vincent F. Hendricks

(Eds.). Springer International Publishing, Cham, 591–607.

[18] Christopher Hitchcock. 2001. The Intransitivity of Causation Revealed in Equa-

tions and Graphs. The Journal of Philosophy 98, 6 (2001), 273–299.

[19] Mark Hopkins. 2005. The Actual Cause: From Intuition to Automation. Ph.D.

Dissertation. University of California Los Angeles.

[20] Mark Hopkins and Judea Pearl. 2007. Causality and Counterfactuals in the

Situation Calculus. Journal of Logic and Computation 17, 5 (2007), 939–953.

https://doi.org/10.1093/logcom/exm048

[21] Shakil M. Khan and Yves Lespérance. 2005. ECASL: A Model of Rational

Agency for Communicating Agents. In 4th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2005), July 25-29, 2005,
Utrecht, The Netherlands, Frank Dignum, Virginia Dignum, Sven Koenig, Sarit

Kraus, Munindar P. Singh, and Michael J. Wooldridge (Eds.). ACM, 762–769.

https://doi.org/10.1145/1082473.1082590

[22] Shakil M. Khan and Yves Lespérance. 2021. Causal Knowledge: Semantics and
Dynamics. Technical Report. Department of Electrical Engineering and Computer

Science, York University, Toronto, Canada.

[23] Shakil M. Khan and Mikhail Soutchanski. 2020. Necessary and Sufficient Condi-

tions for Actual Root Causes. In ECAI 2020 - 24th European Conference on Artificial
Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain, August
29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of
Artificial Intelligence (PAIS 2020) (Frontiers in Artificial Intelligence and Applica-
tions, Vol. 325), Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela

Milano, Senén Barro, Alberto Bugarín, and Jérôme Lang (Eds.). IOS Press, 800–808.

https://doi.org/10.3233/FAIA200169

[24] Florian Leitner-Fischer and Stefan Leue. 2013. Causality Checking for Complex

System Models. In Verification, Model Checking, and Abstract Interpretation, 14th
International Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings
(Lecture Notes in Computer Science, Vol. 7737), Roberto Giacobazzi, Josh Berdine,

and Isabella Mastroeni (Eds.). Springer, 248–267. https://doi.org/10.1007/978-3-

642-35873-9_16

[25] Hector J. Levesque, Fiora Pirri, and Raymond Reiter. 1998. Foundations for the

Situation Calculus. Electronic Transactions on Artificial Intelligence (ETAI) 2 (1998),
159–178. http://www.ep.liu.se/ej/etai/1998/005/

[26] John Leslie Mackie. 1965. Causes and Conditions. American Philosophical Quar-
terly 2, 4 (1965), 245–264.

[27] John McCarthy and Patrick J. Hayes. 1969. Some Philosophical Problems from

the Standpoint of Artificial Intelligence. Machine Intelligence 4 (1969), 463–502.
[28] Robert C. Moore. 1985. A Formal Theory of Knowledge and Action. In Formal

Theories of the Commonsense World. Ablex, 319–358.
[29] Judea Pearl. 1998. On the Definition of Actual Cause. Technical Report R-259.

University of California Los Angeles.

[30] Judea Pearl. 2000. Causality: Models, Reasoning, and Inference. Cambridge Uni-

versity Press.

[31] Raymond Reiter. 2001. Knowledge in Action. Logical Foundations for Specifying
and Implementing Dynamical Systems. MIT Press, Cambridge, MA, USA.

[32] Richard B. Scherl and Hector J. Levesque. 2003. Knowledge, action, and the frame

problem. Artificial Intelligence 144, 1-2 (2003), 1–39. https://doi.org/10.1016/

S0004-3702(02)00365-X

[33] Steven Shapiro, Yves Lespérance, and Hector J. Levesque. 2002. The Cognitive

Agents Specification Language and Verification Environment for multiagent

systems. In The First International Joint Conference on Autonomous Agents &
Multiagent Systems, AAMAS 2002, July 15-19, 2002, Bologna, Italy, Proceedings.
ACM, 19–26. https://doi.org/10.1145/544741.544746

[34] Steven Shapiro, Yves Lespérance, and Hector J. Levesque. 2007. Goal Change in

the Situation Calculus. Journal of Logic and Computation 17, 5 (2007), 983–1018.

https://doi.org/10.1093/logcom/exm050

[35] Herbert A. Simon. 1977. Causal Ordering and Identifiability. Models of Discovery.
Boston Studies in the Philosophy of Science 54 (1977).

[36] Hans P. van Ditmarsch, Andreas Herzig, and Tiago de Lima. 2007. Optimal

Regression for Reasoning about Knowledge and Actions. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, Van-
couver, British Columbia, Canada. AAAI Press, 1070–1076. http://www.aaai.org/

Library/AAAI/2007/aaai07-170.php

https://doi.org/10.1016/S0004-3702(99)00031-4
http://ceur-ws.org/Vol-2052/paper2.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16891
https://doi.org/10.1007/s10703-011-0132-2
https://doi.org/10.1016/j.artint.2018.06.003
https://doi.org/10.1145/2746090.2746102
https://doi.org/10.1016/S0004-3702(02)00271-0
https://doi.org/10.1016/S0004-3702(02)00271-0
https://doi.org/10.1016/S0004-3702(00)00031-X
https://doi.org/10.1016/S0004-3702(00)00031-X
https://doi.org/10.1007/s11229-009-9497-9
https://doi.org/10.1007/s11229-009-9497-9
https://doi.org/10.1613/jair.648
http://ijcai.org/Abstract/15/427
http://ijcai.org/Abstract/15/427
https://doi.org/10.1093/logcom/exm048
https://doi.org/10.1145/1082473.1082590
https://doi.org/10.3233/FAIA200169
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-642-35873-9_16
http://www.ep.liu.se/ej/etai/1998/005/
https://doi.org/10.1016/S0004-3702(02)00365-X
https://doi.org/10.1016/S0004-3702(02)00365-X
https://doi.org/10.1145/544741.544746
https://doi.org/10.1093/logcom/exm050
http://www.aaai.org/Library/AAAI/2007/aaai07-170.php
http://www.aaai.org/Library/AAAI/2007/aaai07-170.php

	Abstract
	1 Introduction
	2 Action and Knowledge
	3 Actual Cause
	4 A Logic of Actual Cause
	5 Causal Knowledge, Sensing, and the Dynamics of Causal Knowledge
	6 Reasoning about Epistemic Causes and Effects
	7 Discussion
	References

